Linköping University Postprint
نویسندگان
چکیده
A method to separate a Doppler power spectrum into a number of flow velocity components, measured in absolute units (mm/s), is presented. A Monte Carlo software was developed to track each individual Doppler shift, to determine the probability, p(n), for a photon to undergo n Doppler shifts. Given this shift distribution, a mathematical relationship was developed and used to calculate a Doppler power spectrum originating from a certain combination of velocity components. The non linear Levenberg-Marquardt optimization method could thus be used to fit the calculated and measured Doppler power spectra, giving the true set of velocity components in the measured sample. The method was evaluated using a multi tube flow phantom perfused with either polystyrene microspheres or undiluted/diluted human blood (hct = 0.45). It estimated the velocity components in the flow phantom well, during both low and high concentrations of moving scatterers (microspheres or blood). Thus, further development of the method could prove to be a valuable clinical tool to differentiate capillary blood flow.